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Abstract

QWIPs operate by photoexcitation of electrons between ground and first excited state
subbands of multi-quantum wells (MQWs) which are artificially fabricated by placing
thin layers of two different, high-bandgap semiconductor materials alternately. The
bandgap discontinuity of two materials creates quantized subbands in the potential wells
associated with conduction bands. The structure parameters are designed so that the
photo-excited carriers can escape from the potential wells and be collected as
photocurrent. Thus, in principle, QWIP operates very similar to extrinsic bulk
photocunductors. Electrons in the subbands of the isolated quantum wells can be
visualized as electrons attached to impurity states in bulk photocunductors. As
photogenerated electron leaves the active doped quantum well region , it leaves behind a
space-charge buildup which impedes another electron from entering the detector from the
opposite electrode. For low-background irradiance levels, high resistivity of the active
region due to thick barriers could leads to a delay in refilling space-charge buildup. This
results in a lower responsitivity at high optical modulation frequencies, similar to
dielectric relaxation in bulk photocundoctors. In order to overcome this problem, we
have designed new QWIP structure separating active quantum well region and blocking
barrier. As shown in the figure xxxx, in MQW structure quantum wells are separated by
thin barriers creating a miniband due to large overlap of sublevel wavefunctions. Space-
charge buldup quickly refilled by electrons via sequential resonant tunneling from the
contact layer (left). Similar to block impurity band detectors, a thick impurity free
blocking barrier is placed between the active region and collector contact to suppress
dark current of the device.

The research described here was performed by the Center for Space Microelectronics
Technology, Jet Propulsion Laboratory, California Institute of Technology, and was
sponsored by the National Aeronautics and Space Administration, breakthrough sensor &
instrument component technology thrust area of the cross enterprise technology
development program.
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JPL Outline

e Introduction: Typical QWIP Structure
*QWIPs at Low Operating Temperatures
 Non Linear Response in QWIP

e Blocked Intersubband Detector (BID)

e Summary
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JPFPL QWIP Dark Currents at Low Temperature
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Broad Band QWIP (AA ~ 4 um) for Low Background Applications
Photon Flux = 1.5x10'3 ph/sec/cm? (120K, f/2)

Low Background Dgg* Vs T for Broad-band QWIP
(f/2 optics at 120 K)
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Broad Band QWIP (AL ~ 4 um) for High Background Applications
Photon Flux = 1.3x10'¢ ph/sec/cm? (280K, f/2)

High Background Dgg* Vs T for Broad-band QWIP
(f/2 optics at 280 K)
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JPL 9-10 um QWIP for Low Background Applications
Photon Flux = 1.5x10'3 ph/sec/cm? (120K, f/2)

9-10pmLow Background QWIP Responsivity
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JPL 9-10 um QWIP for Low Background Applications
Photon Flux = 1.5x10'3 ph/sec/cm? (120K, /2)
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gL 9-10 um QWIP for Low Background Applications
Photon Flux = 1.5x10'3 ph/sec/cm? (120K, 1/2)

NEDT Vs T for 9-10 um Low Background QWIP Peak D* Vs T for 9-10 ym Low Background
(300 K background, /2, -2V) QwIP
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Non-Linear Response of typical

JPL QWIPs at Low background

e Atlow background and low operating temperatures,
QWIP responsivity is limited at high optical
modulation frequencies:

— QWIP speed of operation is limited by
e Carrier capture time (re filling)
e Transient time across the QWIP
e Similar to extrinsic semiconductor detectors

Ershov et al., J. Appl. Phys., 86, 6442, 1999,
Arrington et al., LWIR Photodetectors & Arrays, Vol VI, ECS 98
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Blocked Intersubband Detector (BID)

JPL (for low background, low temperature operation)
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e Thin barriers in absorption layers allow large overlap of sublevel
wavefunctions creating a subband.

e Space-charge build up quickly refilled by electrons via tunneling from
the contact layer .

e Similar to block impurity band detectors, a thick impurity free blocking
barrier is placed between the active region and collector contact to

suppress dark current of the device.
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JP
|'BID Dark current at Low Temperatures
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—JPL Advantages of BID

* Responsivity wavelength can be tailored to a required
wavelength range by changing multi quantum well
parameters of the absorption layer

— LWIR BIDs can operate at 30K
— allows to use passive cooling for NASA Space astronomy
applications

— Potential candidate for strategic applications

e Broad band Responsivity
e Al Ga,,As layer can acts as a reflector allowing light

trapping
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JPL SUMMARY

BIDs - flexible devise design
— Tailorable spectral band (Broad and Narrow)

Moderate operating temperatures allows Passive

cooling in NASA space applications

Potential for strategic applications

QWIPs - based on high bandgap materials

Matured growth and processing technologies
Excellent operability

high pixel-to-pixel uniformity

Large format FPAs

Excellent low frequency noise performance
Radiation Hard

Twelve 640x486 QWIP FPA
on 3-inch GaAs Wafer
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